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Abstract. Artifacts can result when reconstructing a dynamic image sequence from
inconsistent single photon emission computed tomography (SPECT) projection data
acquired by a slowly rotating gantry. The artifacts can lead to biases in kinetic
parameters estimated from time-activity curves generated by overlaying volumes of
interest on the images. Insufficient sampling and truncation of projections by cone-
beam collimators can cause additional artifacts. To overcome these sources of bias
in conventional image based dynamic data analysis, we have been investigating the
estimation of time-activity curves and kinetic model parameters directly from dynamic
SPECT projection data by modeling the spatial and temporal distribution of the
radiopharmaceutical throughout the projected field of view. In the present work,
we perform Monte Carlo simulations to study the effects of the temporal modeling
on the statistical variability of the reconstructed spatiotemporal distributions. The
simulations utilize fast methods for fully four-dimensional (4-D) direct estimation
of spatiotemporal distributions and their statistical uncertainties, using a spatial
segmentation and temporal B-splines. The simulation results suggest that there is
benefit in modeling higher orders of temporal spline continuity. In addition, the
accuracy of the time modeling can be increased substantially without unduly increasing
the statistical uncertainty, by using relatively fine initial time sampling to capture
rapidly changing activity distributions.
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1. Introduction

Artifacts can result when reconstructing a dynamic image sequence from inconsistent

single photon emission computed tomography (SPECT) projection data acquired by

a slowly rotating gantry. The artifacts can lead to biases in kinetic parameters

estimated from time-activity curves generated by overlaying volumes of interest on the

images. Insufficient sampling and truncation of projections by cone-beam collimators

can cause additional artifacts (Tuy 1983). To overcome these sources of bias in

conventional image based dynamic data analysis, we and others have been investigating

the estimation of time-activity curves and kinetic model parameters directly from

dynamic SPECT projection data by modeling the spatial and temporal distribution

of the radiopharmaceutical throughout the projected field of view (Huesman et al 1998,

Gullberg et al 1999, Sitek et al 1999, Reutter et al 2000, Farncombe et al 2001, Kadrmas

and Gullberg 2001, Maltz 2001).

In our previous work we developed a fast method for fully four-dimensional (4-

D) direct estimation of spatiotemporal distributions from dynamic SPECT projection

data (Reutter et al 2000), which extended Formiconi’s least-squares algorithm for

reconstructing temporally static distributions (Formiconi 1993). This method can be

applied to projection data acquired using any collimator or orbit geometry, provided

that the data yield a preliminary image reconstruction that can be used to segment

the activity distribution within the projected field of view. In addition, we studied

the biases that result from modeling various orders of temporal continuity and using

various time samplings (Reutter et al 2000). In the present work, the first goal is

to address computational issues associated with evaluating the statistical uncertainty

of the spatiotemporal model parameter estimates. Monte Carlo simulations are used

to validate a fast algorithm for computing the covariance matrix for the parameters.

Using this fast algorithm, the second goal is to complete the work begun in (Reutter et

al 2000) by studying the statistical variability that results from modeling various orders

of temporal continuity and using various time samplings.

As discussed in (Reutter et al 2000), these fast methods are essential for performing

more detailed spatiotemporal modeling using currently available computers. These

methods are also essential for solving quickly a large linear least-squares subproblem

embedded in a nonlinear compartmental model estimation problem in which kinetic

parameters are estimated directly from projection data (Huesman et al 1998).

2. Fast Computation of Statistical Uncertainty for Spatiotemporal

Distributions

Following our development in (Reutter et al 2000), time-varying activity concentrations

within volumes of interest encompassing the projected SPECT field of view can be

modeled by selecting a set of temporal basis functions capable of representing typical

time variations and having desired smoothness properties. Similarly, the spatially



Physics in Medicine and Biology, 47(15):2673-2683, 2002 (preprint) 3

nonuniform activity concentration within a particular volume of interest can be modeled

by selecting an appropriate set of spatial basis functions. Given a set of temporal basis

functions and sets of spatial basis functions for the volumes of interest, coefficients for

the resulting spatiotemporal basis functions can be estimated directly from the SPECT

projection data, along with the covariance matrix for the coefficients.

2.1. Covariance Matrix for the Spatiotemporal Basis Function Coefficients

Denoting the projection of the mth spatial basis function along ray i at time t by Um
i (t),

and the value of the nth temporal basis function at time t by V n(t), the detected count

rate along ray i at time t can be modeled as

Pi(t) =
M∑

m=1

N∑
n=1

amnU
m
i (t)V n(t), (1)

where the amn are linear coefficients, M is the number of spatial basis functions, and N

is the number of temporal basis functions. Integrating equation (1) over L contiguous

time intervals spanning the data acquisition from time t0 = 0 to time tL = T , the

projection data can be modeled as

pil =
∫ tl

tl−1

Pi(τ)dτ =
M∑

m=1

N∑
n=1

amn

∫ tl

tl−1

Um
i (τ)V n(τ)dτ. (2)

If the time intervals are short enough so that each spatial basis projection function

Um
i (t) is approximated well by a piecewise constant function with amplitude um

il during

time interval [tl−1, tl], then the model for the projection data can be simplified:

pil=

M∑
m=1

N∑
n=1

amnu
m
il v

n
l , (3)

where vn
l is the integral

∫ tl
tl−1

V n(τ)dτ of the nth temporal basis function.

In this work we consider a periodic detector trajectory composed of K periods

with J time intervals per period (i.e., K circular rotations with J angles per rotation).

Replacing the time index l = 1, ..., L with the indices {jk; j = 1, ..., J ; k = 1, ..., K}
and dropping the index k from the now-periodic spatial basis projection factors, the

projection equations (3) can be expressed as

pijk =
M∑

m=1

N∑
n=1

amnu
m
ijv

n
jk. (4)

The criterion which is minimized by varying the linear coefficients amn is the

weighted sum of squares function

χ2 =
I∑

i=1

J∑
j=1

K∑
k=1

(p∗ijk − pijk)
2

Wijk

, (5)

where the p∗ijk are the measured projections, the Wijk are weighting factors, and I is

the number of projection rays acquired simultaneously by the detector. Typically, the

weighting factors are either unity for an unweighted fit or the estimated variances of the

projections for a weighted fit.
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Equations (4) and (5) can be rewritten in matrix form as

p = Fa (6)

and

χ2 = (p∗ − Fa)TΦ−1(p∗ − Fa), (7)

respectively, where p is an IJK element column vector whose [i+(j−1)I+(k−1)IJ ]th

element is pijk, F is an IJK ×MN matrix whose {[i+ (j − 1)I + (k− 1)IJ ], [m+ (n−
1)M ]}th element is um

ijv
n
jk, a is an MN element column vector whose [m+ (n− 1)M ]th

element is amn, p∗ is an IJK element column vector whose [i+ (j − 1)I + (k − 1)IJ ]th

element is p∗ijk, and Φ−1 is an IJK × IJK diagonal matrix whose [i + (j − 1)I + (k −
1)IJ ]th diagonal element is 1/Wijk. The criterion, χ2, is minimized by the vector of

spatiotemporal basis function coefficients

â = (FTΦ−1F)−1FTΦ−1p∗. (8)

The covariance matrix for this weighted least-squares estimate â is

cov(â) = (FTΦ−1F)−1FTΦ−1cov(p∗)Φ−1F(FTΦ−1F)−1, (9)

where cov(p∗) is the covariance matrix for the measured projections.

Given an estimate of cov(p∗), estimates of the statistical uncertainties of the

coefficients â are the square roots of the diagonal elements of the covariance matrix

given by equation (9) and are denoted individually by σ̂âmn . In general, the errors in the

coefficients are correlated and the covariance matrix given by equation (9) has nonzero

elements off the diagonal. Thus, to understand fully the nature of statistical fluctuations

of spline models for time-activity curves, an estimate of the entire covariance matrix is

needed. The full covariance information is used in section 2.2 to define a figure of merit

related to the global precision of spline models.

For computational speed, Φ−1 can be set to the identity matrix and an unweighted

least-squares reconstruction of the coefficients â can be performed. An estimate of

the symmetric MN ×MN covariance matrix cov(â) can then be obtained quickly from

equation (9) as follows. Assuming Poisson noise, the diagonal matrix having the modeled

projections p̂ = Fâ along the diagonal can be used as an estimate of the covariance

matrix for the measured projections. Substituting this diagonal matrix for cov(p∗) and

the identity matrix for Φ−1, equation (9) can be rewritten as

cov(â) = (FTF)−1FTdiag(Fâ)F(FTF)−1. (10)

We have presented a method for quickly calculating (FTF)−1 in (Reutter et al 2000).

Using a similar development, the symmetric MN ×MN matrix FTdiag(Fâ)F can be

calculated quickly as follows. Denoting the {[m+(n−1)M ], [m′+(n′−1)M ]}th element

of FTdiag(Fâ)F by ψmnm′n′ , one has

ψmnm′n′ =
I∑

i=1

J∑
j=1

K∑
k=1

um
ijv

n
jk

[
M∑

m′′=1

N∑
n′′=1

âm′′n′′u
m′′
ij v

n′′
jk

]
um′

ij v
n′
jk, (11)
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where âm′′n′′ is the [m′′ +(n′′−1)M ]th element of â. Rearranging the summations yields

ψmnm′n′ =
M∑

m′′=1

N∑
n′′=1

âm′′n′′
J∑

j=1

[
I∑

i=1

um
iju

m′
ij u

m′′
ij

] [
K∑

k=1

vn
jkv

n′
jkv

n′′
jk

]

=
M∑

m′′=1

N∑
n′′=1

âm′′n′′
J∑

j=1

αmm′m′′
j βnn′n′′

j

=
M∑

m′′=1

N∑
n′′=1

âm′′n′′γ
mnm′n′m′′n′′ ,

(12)

where the factors αmm′m′′
j and βnn′n′′

j denote the summations
∑I

i=1 u
m
iju

m′
ij u

m′′
ij

and
∑K

k=1 v
n
jkv

n′
jkv

n′′
jk , respectively, and the factor γmnm′n′m′′n′′ denotes the sum∑J

j=1 α
mm′m′′
j βnn′n′′

j .

Using the factorization given by equation (12), it can be shown that most

of the overhead associated with computing the symmetric matrix elements ψmnm′n′

lies in calculating the αmm′m′′
j factors and the γmnm′n′m′′n′′ factors. These

calculations take about [(I/N3) + 1]JMNQ multiply-and-add operations, where

Q = (MN)(MN + 1)/2. By comparison, relatively straightforward computation of the

summations given by equation (11) takes about IJKQ multiply-and-add operations.

Thus, for the simulated dynamic cardiac cone-beam SPECT studies described in

section 3, for which I/N3 = 1/2, the factorization given by equation (12) reduces the

computation by a factor of about 2IK/3MN ≈ 200.

2.2. Covariance Between Integrated Time-Activity Curve Model Segments

Given an estimate of the covariance matrix, cov(â), for the spatiotemporal basis function

coefficients, estimates of the covariance between integrated segments of the time-activity

curve models for the volumes of interest can be obtained as follows.

The integral of the time-activity curve model for volume of interest m, during the

time interval associated with angle j of rotation k, can be expressed as
∑N

n=1 âmnv
n
jk.

Thus, the covariance of this time integral with the time integral associated with volume

of interest m′ during angle j′ of rotation k′ is

cov

(
N∑

n=1

âmnv
n
jk,

N∑
n=1

âm′nv
n
j′k′

)
=

N∑
n=1

N∑
n′=1

vn
jkcov(âmn, âm′n′)v

n′
j′k′ , (13)

and the variance of each time integral is

σ2
jkm =

N∑
n=1

N∑
n′=1

vn
jkcov(âmn, âmn′)v

n′
jk. (14)

As a figure of merit related to the global precision of the time-activity curve model

for volume of interest m, the following expression yields a squared noise-to-signal ratio

(NSR) calculated as the mean (over all of the time segments) of the expected values of

the squared errors between the integrated segments of the “true” and modeled curves,
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normalized by the mean square value of the integrated segments of the “true” curve:

ξ2
m =

∑J
j=1

∑K
k=1 σ

2
jkm∑J

j=1

∑K
k=1

[∑N
n=1 âmnvn

jk

]2 . (15)

Substituting equation (14) into equation (15), the squared NSR, ξ2
m, can be calculated

quickly by rearranging the summations, precomputing the inner products of the

temporal basis functions, νnn′ =
∑J

j=1

∑K
k=1 v

n
jkv

n′
jk, and exploiting the symmetry with

respect to the indices n and n′:

ξ2
m =

∑N
n=1

∑N
n′=1 cov(âmn, âmn′)ν

nn′∑N
n=1

∑N
n′=1 âmnâmn′νnn′

. (16)

The global NSR, ξm, is used in section 3 to assess the precision of temporal modeling

for simulated dynamic cardiac cone-beam SPECT studies. The global NSR is also used

to assess the increase in precision that would be yielded by a weighted least-squares

fit that uses the covariance matrix for the projections as the weighting matrix Φ in

equations (7)–(9). This measure is calculated by replacing p∗ in equation (8) with the

expected values of the projections and replacing Φ in equations (8) and (9) with cov(p∗).
The resulting values for â and cov(â) are then substituted into equation (16).

3. Computer Simulations

Using the simulation apparatus described in (Reutter et al 2000), Monte Carlo

simulations were performed to validate the fast algorithm presented in section 2 and

to study the effects of the temporal modeling on the statistical variability of the

reconstructed spatiotemporal distributions.

Simulated spatiotemporal distributions were obtained using the Mathematical

Cardiac Torso (MCAT) phantom developed at the University of North Carolina (Tsui

et al 1993). The emission phantom (figure 1) was composed of 128 contiguous 1.75 mm-

thick slices and contained the blood pool, three myocardial tissue volumes of interest

(normal myocardium, septal defect, and lateral defect), liver, and background tissue.

Projections were attenuated using the corresponding MCAT attenuation phantom.

The simulated time-activity curves (figure 2) mimicked the kinetics of teboroxime

(Narra et al 1992). The simulated 15 min data acquisition consisted of I = 2048 cone-

beam projection rays per angle (64 transverse × 32 axial), J = 120 angles per rotation,

and K = 15 rotations, and thus yielded about 3.7 million projection samples. The

projection bins were 7 mm × 7 mm at the detector, and the detector was 30 cm from

the center of the field of view. The cone-beam collimators had a hole diameter of

2 mm, a length of 4 cm, and were offset 1 cm from the detector. The focal length was

70 cm, which resulted in truncation of the data (figure 1). Attenuation and geometric

point response were modeled using a ray-driven projector with line length weighting

(Zeng et al 1991). Scatter was not modeled. The amplitude of the simulated blood

input function was adjusted so that about 10 million events were detected using the

cone-beam collimators.
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Figure 1. Transverse cross section through the MCAT emission phantom, showing
the truncation of data resulting from the use of cone-beam collimators.
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Figure 2. Simulated teboroxime time-activity curves for the volumes in figure 1.
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Figure 3. Sixteen piecewise quadratic B-spline temporal basis functions used to
validate the fast algorithm. The thirteenth spline is shown as a solid curve.
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The spatial basis projection factors um
ij were defined by forward projecting each

of the six known emission volumes composing the MCAT phantom (figure 1). Each

emission volume was modeled to contain spatially uniform activity, which yieldedM = 6

sets of spatial basis projection factors.

3.1. Validation of the Fast Algorithm

A set of 1600 realizations of projection data having Poisson noise was generated and

reconstructed using temporal basis integral factors vn
jk that were defined by integrating

N = 16 splines spanning 15 time segments having geometrically increasing length

(figure 3). Piecewise quadratic B-splines were used with an initial time segment length

of 10 sec. The resulting curve models were continuous through their first derivative. For

noiseless projections, the modeling error was less than 2%, where the error was defined

to be the root mean square (RMS) difference between the simulated curve and the spline

model, normalized by the RMS value of the simulated curve (Reutter et al 2000).

The computational benefit of using the factorization given by equation (12) to

estimate the covariance matrix for the spatiotemporal basis function coefficients was

evident in the simulations. The number of multiply-and-add operations used to calculate

FTdiag(Fâ)F was reduced by a factor of about 200 so that only 80 million multiply-

and-adds were needed, instead of 17 billion. Using a 194-MHz R10000-based SGI

workstation, it took 34 sec to estimate the 96 coefficients for the spatiotemporal basis

functions, their covariance matrix, and the squared noise-to-signal ratios given by

equation (16).

Table 1 shows that for the blood pool and myocardial tissue volumes, the sample

means of the σ̂âmn (the square roots of the diagonal elements of the estimated covariance

matrix) were within 5% of the sample standard deviations of the âmn (the estimated

spatiotemporal basis function coefficients). For the liver and background tissue, the

agreement was to within 4% (data not shown). The coefficients of variation for the σ̂âmn

were less than 2% (data not shown).

Table 2 shows that the sample means of the ξm (the estimated NSRs given by

equation (16)) were within 4% of the sample means of the RMS differences between the

1600 sets of time-activity curve models and their corresponding mean curves, normalized

by the RMS values of the mean curves. The curves for the septal and lateral defects

exhibited the largest variability because of their small spatiotemporal support, i.e., the

normal myocardium had a volume that was about 30 times greater than that of each

defect (250 cc compared to 8.4 cc) and the RMS value for the activity density in the

normal myocardium was about three times greater than that in the defects.

Table 2 also shows that the NSR would improve slightly when performing a weighted

least-squares fit that uses the covariance matrix for the projections as the weighting

matrix Φ in equations (7)–(9).
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Table 1. Sample means and sample standard deviations of the spatiotemporal
basis function coefficients âmn, and sample means of the estimated coefficient
uncertainties σ̂âmn

, for 1600 realizations of noisy projections. For each volume of
interest, the sample standard deviations of the coefficients âmn agree closely with the
sample means of the estimated uncertainties σ̂âmn

.

blood pool normal myocardium septal defect lateral defect

n â1n σ̂â1n
â2n σ̂â2n

â3n σ̂â3n
â4n σ̂â4n

mean sdev mean mean sdev mean mean sdev mean mean sdev mean

1 0.279 0.128 0.131 0.0102 0.166 0.166 −0.0529 1.28 1.29 −0.212 0.747 0.762
2 5.20 0.138 0.140 1.05 0.171 0.174 0.559 1.33 1.35 0.979 1.47 1.46
3 7.65 0.157 0.160 2.30 0.185 0.187 1.36 1.89 1.88 1.38 3.00 2.99
4 8.20 0.172 0.175 3.75 0.331 0.333 1.89 3.04 3.05 2.42 1.95 1.95
5 7.19 0.153 0.160 5.15 0.222 0.219 2.33 1.91 1.94 3.25 1.26 1.27
6 5.40 0.105 0.107 6.30 0.148 0.145 2.70 1.20 1.24 3.58 1.75 1.73
7 3.51 0.0974 0.0953 7.07 0.141 0.140 2.87 1.50 1.54 3.59 0.876 0.864
8 2.00 0.0658 0.0668 7.36 0.108 0.109 2.67 0.886 0.904 3.11 1.08 1.09
9 1.04 0.0545 0.0543 7.21 0.0839 0.0836 2.45 0.600 0.602 2.44 0.593 0.602

10 0.535 0.0464 0.0446 6.71 0.0743 0.0735 2.02 0.560 0.562 1.69 0.418 0.411
11 0.308 0.0361 0.0362 5.98 0.0632 0.0628 1.57 0.486 0.477 1.03 0.364 0.354
12 0.208 0.0305 0.0298 5.13 0.0538 0.0530 1.13 0.397 0.399 0.592 0.296 0.300
13 0.149 0.0250 0.0245 4.20 0.0454 0.0441 0.761 0.327 0.325 0.307 0.258 0.253
14 0.103 0.0197 0.0201 3.28 0.0360 0.0365 0.478 0.268 0.270 0.179 0.206 0.207
15 0.0657 0.0167 0.0168 2.39 0.0303 0.0308 0.268 0.232 0.234 0.0853 0.165 0.170
16 0.0399 0.0169 0.0169 1.64 0.0314 0.0313 0.135 0.270 0.269 0.0651 0.161 0.164

Table 2. Sample means and sample standard deviations of observed and estimated
noise-to-signal ratios for time-activity curves, for 1600 realizations of noisy projections.
A weighted least-squares (WLS) fit would improve the NSR slightly.

observed NSR estimated NSR WLS
(%) ξm (%) ξm (%)

mean sdev mean sdev

blood pool 1.51 0.35 1.56 0.008 1.47
normal myocardium 1.13 0.27 1.16 0.003 1.08
septal defect 32.5 9.1 32.5 2.6 32.4
lateral defect 28.5 8.0 28.6 2.3 28.3
liver 0.167 0.031 0.170 0.0001 0.158
background 0.242 0.058 0.247 0.0002 0.225

3.2. Effects of Temporal Modeling

To study the statistical variability that results from modeling various orders of

temporal continuity and using various time samplings, 24 sets of 1000 realizations of

projection data having Poisson noise were generated. Each set of 1000 projections
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was reconstructed using a different set of temporal basis functions consisting of N = 16

splines spanning 15 time segments having geometrically increasing length (e.g., figure 3).

Piecewise cubic, quadratic, linear, or constant B-splines were used with initial time

segment lengths of 2.5, 5, 10, 20, 40, or 60 sec.

Figure 4 shows the results for the blood pool and three myocardial tissue volumes.

For each temporal basis set and volume of interest, there was close agreement between

the sample mean of the estimated NSR, ξm, and the observed NSR, which was calculated

as described in the caption for figure 4. The effect of the polynomial order of the splines

on the NSR was relatively small, while the effect of the time sampling was larger. The

NSR tended to decrease as the time sampling became more uniform (e.g., for initial time

segment lengths of 40 or 60 sec). However, the decrease in NSR was offset by an increase

in normalized RMS bias, which was calculated as described in the caption for figure 4.

The normalized RMS bias increased because these basis sets had initial samplings that

were too long to accurately model the beginning of the acquisition, when the activity

concentrations were changing most rapidly (figure 2). The normalized RMS bias also

tended to increase as the polynomial order of the splines decreased.

The combined effects of statistical fluctuations measured by the NSR and modeling

errors measured by normalized RMS bias were studied by adding the quantities in

quadrature (i.e., taking the square root of the sum of their squares). The resulting total

expected RMS error for the blood pool reached a minimum of 1.6% when using cubic

or quadratic splines having initial time samplings of 10 sec or less. Using these same

sets of temporal basis functions, the total error for the background did not exceed 0.7%

(data not shown). For the myocardial volumes, the total error was at its lowest when

using cubic, quadratic, or linear splines having initial time samplings of 20 sec or less.

Using these basis functions, the total error for the normal myocardium, septal defect,

and lateral defect ranged between 1.0–1.3%, 30–35%, and 24–33%, respectively. The

total absolute RMS error for each defect was only about 10% of the RMS value of the

time-activity curve for the normal myocardium. This absolute error was sufficiently

small to allow the defects to be discriminated from the normal myocardium. The total

error for the liver was 0.2% (data not shown).

4. Discussion

The fast algorithm presented in section 2 facilitated the study of the statistical variability

that results from modeling various orders of temporal continuity and using various time

samplings, when estimating spatiotemporal distributions directly from dynamic cone-

beam SPECT projection data. The simulation results presented in section 3 suggest

that there is benefit in modeling higher orders of temporal continuity. In addition, it

appears that the accuracy of time-activity curve models can be increased substantially

without unduly increasing their statistical uncertainty, by using relatively fine initial

time sampling to capture rapidly changing activity distributions. A future goal is

to introduce the initial time sampling of the splines as a nonlinear parameter that is
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Figure 4. Effects of temporal modeling. The “∗” symbols denote normalized RMS
bias values observed for 1000 realizations of noisy projections. For each temporal basis
set, normalized RMS bias was calculated by first calculating the mean time-activity
curve for the 1000 noisy curves, and then calculating the RMS difference between the
mean noisy curve and the simulated curve (figure 2). The RMS difference was then
normalized by the RMS value for the simulated curve and expressed as a percentage.
The “◦” symbols denote the observed NSR for each basis set, which was calculated as
the mean value of the RMS differences between the 1000 noisy curves and the mean
noisy curve, normalized by the RMS value of the mean noisy curve, and expressed as
a percentage. The “×” symbols denote mean values of estimated NSR, ξm, calculated
using equation (16). These values agree closely with the observed NSR values.

optimized in conjunction with the spline coefficients.

Although the estimation of compartmental model parameters from directly

estimated time-activity curves was not considered here, the fast covariance calculation

could help to improve kinetic data analysis. By incorporating information about the full

covariance between time-activity curve models for the blood input function and tissue

volumes, kinetic parameter estimates could be estimated more precisely (Huesman and

Mazoyer 1987, Kadrmas et al 1999).

Future work also includes the joint estimation of a temporal spline model for the

blood input function and kinetic parameters for compartmental models directly from

the projection data. To improve the detail of spatial modeling, we plan to increase

the number of segmented volumes encompassing the projected field of view and to

parameterize spatially nonuniform activity concentrations within the volumes.
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